Impacts of Nutrients on the Biological Integrity of Streams and Rivers: Information to help refine Nutrient Criteria for Wisconsin

Dale Robertson
U.S. Geological Survey

Contact Information

Email: dzrobert@usgs.gov

Tele: 608-821-3867

Eutrophication – Local Problems

Hypoxia in the Gulf of Mexico – Downstream Problems

Frequency of Occurrence 1985 - 1999

Rabalais et al., 1999

Nutrient Criteria Regionalization Framework:

Initial Classification Scheme for the National Nutrient Strategy
Based on Omernik Ecoregions

General Approaches to Define Nutrient Criteria

- 1. Background or Reference Condition
- 2. Biological Response Threshold or Breakpoint

Two percentile approaches proposed by the EPA to define a background or reference condition

Reference concentrations for total phosphorus, total nitrogen, and suspended chlorophyll a concentrations, and turbidity in various ecoregions (U.S. Environmental Protection Agency, 2000b and 2001)

Region	Total Phosphorus, mg/L	Total Nitrogen (mg/L, Calculated/Reported)	Chlorophyll a (ug/L, Fluorometric/Spectropho tometric/Trichromatic Methods)
Ecoregion 7	0.033	0.54/0.54	1.54/3.50/5.8
NCHF-51	0.029	0.46/0.71	1.03/8.76/
DFA-52	0.070	1.88/1.51	1.00/2.32/
SWTP-53	0.080	1.59/1.30	0.55/3.52/
Ecoregion 8	0.010	0.20/0.38	0.60/2.60/4.3

^{***} However, the U.S. EPA does expect various States and Tribes to refine these values

Background Concentration – Regression Approach (By Zone)

- 1. $Ln(TP_P) = a + b (Total Ag) + c (Total Urban)$
- 2. $Ln(TP_p) = -3.923 + 1.728(0) + 2.926(0)$
- 3. $Ln(TP_B) = -3.923$ SE = 0.142
- 4. $TP_B = 0.020 \text{ mg/L}$
- 5. $TP_B = 0.015 0.026 \text{ mg/L}$

Impacts of Nutrients on the Biological Integrity of Wadeable Streams and Nonwadeable Rivers in Wisconsin

Dale Robertson David Graczyk

Lizhu Wang
Paul Garrison
Brian Weigel

Refinements For Wisconsin

Goals of Study

- 1. Describe the distribution of water quality and biology communities in Wisconsin's streams
- 2. Describe the importance of nutrients to biological community composition
- 3. Estimate reference conditions and nutrient breakpoints for the State on a "best" regional basis
- 4. Provide information to help develop refined Nutrient Criteria for Wisconsin

Proposed Regionalization Schemes

Reference Water Quality and Response with the Regression Approach

{ Reference Concentrations ~ 0.03 – 0.04 mg/L

Reference concentrations – Regression Approach

 $Ln(TP_P) = a + b (Total Ag) + c (Total Urban) + d (PtSources)$

Reference conditions for Total Phosphorus for <u>all streams and rivers</u> in Wisconsin.

Total Phosphorus (mg/L)			
		95 % Confidence Limits for	
	Median Background	Background	
Entire State	0.03 - 0.04	0.04 - 0.06	

Reference Biological Conditions – Percentile of Reference Streams Approach

Reference Biological Conditions – Multiple Approaches

Reference conditions for various biotic indices.

	Best 25th Percentile	Median of reference	Worst 25th percentile of	Regression approach	Regression approach (worst 95
Parameter Parameter	of all data	sites	reference sites	(mean)	percentile)
Macroinvertebrates					
Species richness	38	30	29	38	34
Mean pollution tolerance index	4.8	4.6	4.7	4.8	5.2
% individuals from order Ephemeroptera	31%	45%	31%	29%	20%
Hilsenhoff biotic index	4.9	4.5	4.7	5.0	5.6
% individuals from order Plecoptera	0.8%	0.7%	0.3%	1.3%	0.3%
% individuals that are scrapers	12.5%	17.4%	11.8%	13.7%	7.0%
Fish					
Wisconsin large river index of biotic integrity	90	95	88	87	75
% suckers by weight	72%	84%	77%	67%	53%
# of species intolerant of degradation	3	4	3.3	3.7	3.0
% individuals that are river species	39%	44%	30%	39%	29%
# river species	7	6	4.3	6.4	5.0
% individuals that are lithophilic spawners	73%	88%	85%	73%	63%

Note: red values are not significant at p < 0.1

Theoretical Biological Response to Increases in Nutrient Concentrations

Threshold/Breakpoint Approach

Theoretical Biological Response to Increases in Nutrient Concentrations Threshold/Breakpoint Approach

Breakpoints in Macroinvertebrate Response

Small Streams

Breakpoints in Macroinvertebrate Response

Breakpoints in Fish Response

Small Streams

Breakpoints in Fish Response

Breakpoints / Thresholds for Biological Response

Thresholds or break points in the response in water quality and various biological indices to changes in Phosphorus concentrations (in mg/L)

Biological Indices	Total Phosphorus	
Water Qu	ality	
Secchi Depth	0.106	
Suspended Chlorophyll	0.070	
Benthic Chlorophy	II and Diatoms	Wadeable Streams
Benthic Chlorophyll	0.039	Range
Nutrient Index	0.057	0.039 – 0.106 mg/L
Siltation Index	0.074	0.039 - 0.100 Hig/L
Biotic Index	0.072	
Macroinvert	ebrates	
Hilsenhoff Biotic Index	0.088	
Percent EPT individuals	0.087	
Percent EPT taxa	0.091	
Fish		
Fish Index of Biotic Integrity	0.055	
Percent carnivorous fish	0.055	
Percent intolerant fish	0.067	

Breakpoints / Thresholds for Biological Response

Thresholds or break points in the responses in water quality and various biological indices to changes in Total Phosphorus concentrations for nonwadeable streams in Wisconsin

	Total	
Biological Indices	Phosphoru	ıs
Water Quality		
Secchi Depth	0.091	
Suspended Chl Log	0.064	
Macroinvertebrates	ſ	<u></u>
Species richness	0.150	Nonwadeable Rivers
Mean pollution tolerance index	0.064	Range
Percent of individuals from order Ephemeroptera	0.040	0.04 – 0.15 mg/L
Hilsenhoff biotic index	0.150	0.04 0.13 mg/E
Percent of individuals from order Plecoptera	0.148	
Percent of individuals that are scrapers	0.034	
Fish		
Wisconsin large river index of biotic integrity	0.139	
Percent of Weight that is Suckers	0.091	
Number of Intolerant Species	0.139	
Percent of individuals that are river species	0.079	
Number of River Species	0.147	
Percent of individuals that are lithophilic spawners	0.055	

In cooperation with the Wisconsin Department of Natural Resources

Nutrient Concentrations and Their Relations to the Biotic Integrity of Wadeable Streams in Wisconsin

Professional Paper 1722

U.S. Department of the Interior U.S. Geological Survey

Available at http://pubs.usgs.gov/pp/pp1722/

Robertson, D.M., Graczyk, D.J., Garrison, P.J., Wang, L., LaLiberte, G., and Bannerman, R., 2006.

Contact: Dale M. Robertson, U.S. Geological Survey, dzrobert@usgs.gov